z-logo
open-access-imgOpen Access
Convergence in capacity and applications
Author(s) -
Phạm Hoàng Hiệp
Publication year - 2010
Publication title -
mathematica scandinavica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.553
H-Index - 30
eISSN - 1903-1807
pISSN - 0025-5521
DOI - 10.7146/math.scand.a-15144
Subject(s) - omega , mathematics , convergence (economics) , combinatorics , physics , quantum mechanics , economics , economic growth
In this article we prove that if $u_j, v_j, w\in\mathcal{E}(\Omega)$ such that $u_j,v_j\geq w$, $\forall\ j\geq 1$, and $|u_j-v_j|\to 0$ in $C_n$-capacity, then $\lim_{j\to\infty}h(\varphi_1,\ldots,\varphi_m) [(dd^cu_j)^n-(dd^cv_j)^n]=0$ in the weak-topology of measures for all $\varphi_1,\ldots ,\varphi_m\in{\operatorname{PSH}}\cap L_{\operatorname {loc}}^\infty (\Omega)$, $h\in C(\mathsf{R}^m)$. We shall then use this result to give some applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here