z-logo
open-access-imgOpen Access
Rigid $\mathcal{OL}_p$structures of non-commutative $L_p$-spaces associated with hyperfinite von Neumann algebras
Author(s) -
Marius Junge,
Zhong Jin Ruan,
Quanhua Xu
Publication year - 2005
Publication title -
mathematica scandinavica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.553
H-Index - 30
eISSN - 1903-1807
pISSN - 0025-5521
DOI - 10.7146/math.scand.a-14945
Subject(s) - mathematics , commutative property , space (punctuation) , von neumann algebra , von neumann architecture , pure mathematics , matrix (chemical analysis) , operator (biology) , operator algebra , combinatorics , philosophy , linguistics , biochemistry , chemistry , repressor , transcription factor , gene , materials science , composite material
This paper is devoted to the study of rigid local operator space structures on non-commutative $L_p$-spaces. We show that for $1\le p \neq 2 < \infty$, a non-commutative $L_p$-space $L_p(\mathcal M)$ is a rigid $\mathcal{OL}_p$ space (equivalently, a rigid $\mathcal{COL}_p$ space) if and only if it is a matrix orderly rigid $\mathcal{OL}_p$ space (equivalently, a matrix orderly rigid $\mathcal{COL}_p$ space). We also show that $L_p(\mathcal M)$ has these local properties if and only if the associated von Neumann algebra $\mathcal M$ is hyperfinite. Therefore, these local operator space properties on non-commutative $L_p$-spaces characterize hyperfinite von Neumann algebras.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here