z-logo
open-access-imgOpen Access
On the Borel cohomology of free loop spaces
Author(s) -
Iver Ottesen
Publication year - 2003
Publication title -
mathematica scandinavica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.553
H-Index - 30
eISSN - 1903-1807
pISSN - 0025-5521
DOI - 10.7146/math.scand.a-14419
Subject(s) - mathematics , cohomology , lambda , loop (graph theory) , omega , space (punctuation) , homomorphism , functor , combinatorics , product (mathematics) , prime (order theory) , loop space , discrete mathematics , pure mathematics , geometry , physics , quantum mechanics , linguistics , philosophy
Let $X$ be a space and let $K = H^*(X; \boldsymbol F_p)$ where $p$ is an odd prime. We construct functors $\overline \Omega$ and $\ell$ which approximate cohomology of the free loop space $\Lambda X$ as follows: There are homomorphisms $\overline \Omega(K) \to H^*(\Lambda X; \boldsymbol F_p)$ and $\ell(K)\to H^*(E\boldsymbol T\times_T\Lambda X;\boldsymbol F_p)$. These are isomorphisms when $X$ is a product of Eilenberg-MacLane spaces of type $K(\boldsymbol F_p,n)$ for $n \geq 1$.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom