z-logo
open-access-imgOpen Access
Heat kernel estimates and functional calculi of $-b \Delta$
Author(s) -
Alan McIntosh,
Andrea R. Nahmod
Publication year - 2000
Publication title -
mathematica scandinavica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.553
H-Index - 30
eISSN - 1903-1807
pISSN - 0025-5521
DOI - 10.7146/math.scand.a-14310
Subject(s) - mathematics , bounded function , heat kernel , kernel (algebra) , heat equation , combinatorics , quadratic equation , operator (biology) , function (biology) , measurable function , mathematical analysis , geometry , chemistry , biochemistry , repressor , evolutionary biology , biology , transcription factor , gene
We show that the elliptic operator ${\mathcal L} = - b(x) \Delta$ has a bounded $H^\infty$ functional calculus in $L^p(\boldsymbol R^n), 1 < p < \infty$, where $b$ is a bounded measurable complex-valued function with positive real part. In the process, we prove quadratic estimates for ${\mathcal L}$, and obtain bounds with fast decay and Hölder continuity estimates for $k_t(x,y) b(y)$ and its gradient, where $k_t(x,y)$ is the heat kernel of $-b(x) \Delta$. This implies $L^p$ regularity of solutions to the parabolic equation $\partial_t u + {\mathcal L} u = 0$.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom