
Unified Algebras and Institutions
Author(s) -
Peter D. Mosses
Publication year - 1989
Publication title -
daimi pb
Language(s) - English
Resource type - Journals
eISSN - 2245-9316
pISSN - 0105-8517
DOI - 10.7146/dpb.v18i274.7628
Subject(s) - functor , mathematics , bounded function , algebraic number , algebra over a field , pure mathematics , computer science , mathematical analysis
A novel framework for algebraic specification of abstract data types is introduced. It involves so-called ''unified algebras'', where sorts are treated as values, so that operations may be applied to sorts as well as to the elements that they classify. An institution for unified algebras is defined, and shown to be liberal. However, the ordinary ''forgetful'' functor does not forget any values in unified algebras, so the usual data constraints do not have any models. A ''more forgetful'' functor is introduced and used to define so-called ''bounded'' data constraints, which have the expected models.