
A Complete, Co-Inductive Syntactic Theory of Sequential Control and State
Author(s) -
Kristian Støvring,
Søren B. Lassen
Publication year - 2007
Publication title -
brics report series
Language(s) - English
Resource type - Journals
eISSN - 1601-5355
pISSN - 0909-0878
DOI - 10.7146/brics.v14i4.21927
Subject(s) - bisimulation , equivalence (formal languages) , mathematics , extension (predicate logic) , computer science , algebra over a field , discrete mathematics , pure mathematics , calculus (dental) , programming language , medicine , dentistry
We present a new co-inductive syntactic theory, eager normal form bisimilarity, for the untyped call-by-value lambda calculus extended with continuations and mutable references. We demonstrate that the associated bisimulation proof principle is easy to use and that it is a powerful tool for proving equivalences between recursive imperative higher-order programs. The theory is modular in the sense that eager normal form bisimilarity for each of the calculi extended with continuations and/or mutable references is a fully abstract extension of eager normal form bisimilarity for its sub-calculi. For each calculus, we prove that eager normal form bisimilarity is a congruence and is sound with respect to contextual equivalence. Furthermore, for the calculus with both continuations and mutable references, we show that eager normal form bisimilarity is complete: it coincides with contextual equivalence.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom