
Extending the Extensional Lambda Calculus with Surjective Pairing is Conservative
Author(s) -
Kristian Støvring
Publication year - 2006
Publication title -
brics report series
Language(s) - English
Resource type - Journals
eISSN - 1601-5355
pISSN - 0909-0878
DOI - 10.7146/brics.v13i5.21911
Subject(s) - pairing , surjective function , extensional definition , conservative extension , mathematics , axiom , calculus (dental) , lambda calculus , extension (predicate logic) , lambda , pure mathematics , discrete mathematics , computer science , geometry , physics , geology , programming language , medicine , paleontology , superconductivity , dentistry , quantum mechanics , optics , tectonics
We answer Klop and de Vrijer's question whether adding surjective-pairing axioms to the extensional lambda calculus yields a conservative extension. The answer is positive. As a byproduct we obtain the first ``syntactic'' proof that the extensional lambda calculus with surjective pairing is consistent.