
From Reduction-Based to Reduction-Free Normalization
Author(s) -
Olivier Danvy
Publication year - 2004
Publication title -
brics report series
Language(s) - English
Resource type - Journals
eISSN - 1601-5355
pISSN - 0909-0878
DOI - 10.7146/brics.v11i30.21855
Subject(s) - normalization (sociology) , mathematics , transformation (genetics) , reduction (mathematics) , converse , algorithm , arithmetic , computer science , chemistry , biochemistry , geometry , sociology , anthropology , gene
We present a systematic construction of a reduction-free normalization function. Starting from a reduction-based normalization function, i.e., the transitive closure of a one-step reduction function, we successively subject it to refocusing (i.e., deforestation of the intermediate reduced terms), simplification (i.e., fusing auxiliary functions), refunctionalization (i.e., Church encoding), and direct-style transformation (i.e., the converse of the CPS transformation). We consider two simple examples and treat them in detail: for the first one, arithmetic expressions, we construct an evaluation function; for the second one, terms in the free monoid, we construct an accumulator-based flatten function. The resulting two functions are traditional reduction-free normalization functions. The construction builds on previous work on refocusing and on a functional correspondence between evaluators and abstract machines. It is also reversible.