
Domain Theory for Concurrency
Author(s) -
Mikkel Nygaard,
Glynn Winskel
Publication year - 2003
Publication title -
brics report series
Language(s) - English
Resource type - Journals
eISSN - 1601-5355
pISSN - 0909-0878
DOI - 10.7146/brics.v10i43.21815
Subject(s) - concurrency , linear logic , denotational semantics , nondeterministic algorithm , mathematics , bisimulation , soundness , domain theory , process calculus , algebra over a field , programming language , computer science , theoretical computer science , operational semantics , semantics (computer science) , discrete mathematics , pure mathematics
A simple domain theory for concurrency is presented. Based on a categorical model of linear logic and associated comonads, it highlights the role of linearity in concurrent computation. Two choices of comonad yield two expressive metalanguages for higher-order processes, both arising from canonical constructions in the model. Their denotational semantics are fully abstract with respect to contextual equivalence. One language derives from an exponential of linear logic; it supports a straightforward operational semantics with simple proofs of soundness and adequacy. The other choice of comonad yields a model of affine-linear logic, and a process language with a tensor operation to be understood as a parallel composition of independent processes. The domain theory can be generalised to presheaf models, providing a more refined treatment of nondeterministic branching. The article concludes with a discussion of a broader programme of research, towards a fully fledged domain theory for concurrency.