z-logo
open-access-imgOpen Access
Expression profiling of kinesins, involved in the development of autophagy in Arabidopsis thaliana, and the role of tubulin acetylation in the interaction of Atg8 protein with microtubules
Author(s) -
V. D. Olenieva,
Dmytro I. Lytvyn,
А. І. Yemets,
Ya. B. Blume
Publication year - 2018
Publication title -
faktori eksperimental noi evolucii organizmiv
Language(s) - English
Resource type - Journals
eISSN - 2415-3826
pISSN - 2219-3782
DOI - 10.7124/feeo.v22.942
Subject(s) - microtubule , kinesin , atg8 , tubulin , microbiology and biotechnology , autophagy , biology , acetylation , arabidopsis , chemistry , gene , genetics , mutant , apoptosis
Aim. To investigate the interrelation between changes in the expression levels of kinesin genes that are potentially involved in the development of stress-induced autophagy in Arabidopsis thaliana by means of microtubules, and the structural biology analysis of the role of α-tubulin acetylation in the regulation of interaction of α-tubulin with Atg8. Methods. The simulation of the influence of abiotic stresses. PCR analysis of changes in expression levels of kinesin genes. The molecular dynamics simulations of α-tubulin and Atg8 complexes were performed using the GROMACS 4.5.5 program. Results. It was shown that the changes in expression levels were caused by the influence of stressful stimuli. A significant increase in the transcriptional activity of the KIN5B, KIN12B, KIN12F genes after UV-B irradiation, the KIN6, KIN7O, KIN7D, KIN12B genes under osmotic-, and KIN6, KIN12B under salt stress was detected. By means of bioinformatics it was demonstrated that α-tubulin acetylation provides an enhanced interaction of α-tubulin and Atg8 protein. Conclusions. Obtained data point out the important role of kinesins and α-tubulin acetylation in realization of microtubules’ partaking in the development of stress-induced autophagy in plants. Keywords: microtubules, α-tubulin, kinesins, Atg8 protein, stress-induced autophagy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom