z-logo
open-access-imgOpen Access
MOLECULAR STRUCTURE AND VIBRATION SPECTRA OF PIVALIC ACID
Author(s) -
Alexander E. Pogonin,
Oleg A. Pimenov,
Yuriy A. Zhabanov
Publication year - 2018
Publication title -
izvestiâ vysših učebnyh zavedenij. himiâ i himičeskaâ tehnologiâ/izvestiâ vysših učebnyh zavedenij. seriâ himiâ i himičeskaâ tehnologiâ
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.221
H-Index - 5
eISSN - 2500-3070
pISSN - 0579-2991
DOI - 10.6060/tcct.20165907.5412
Subject(s) - pivalic acid , density functional theory , molecule , chemistry , infrared spectroscopy , spectral line , metal , valence (chemistry) , computational chemistry , physics , organic chemistry , astronomy , catalysis
The metal carboxylates such as metal pivalates (salts of the pivalic acid (CH3)3CCOOH) attract a great interest as most promising precursors for chemical vapor deposition (CVD) technology. The possibility to use these substances in the CVD technology is specified by their good thermal stability and high volatility. For modeling of chemical reactions with metal pivalates in the gas-phase and the data on molecular structure will be very useful, in particularly information about effect of central metal ion to geometry of pivalic ligands. In the frame of this task the structures of metal pivalate molecules and pivalic acid (H(piv)) in a gas phase should be finding. The aim of present work is theoretical investigation of the geometry and IR-spectrum of H(piv) using density functional theory (DFT) methods. All calculations were performed using the Gaussian 03 program. The optimization of geometry and quadratic force field calculations were carried out using DFT functionals B3LYP, PBE, PBE0 and BP86 with correlation-consistent triple-ζ valence cc-pVTZ basis sets for O, C, and H. Appropriate assignment of vibrational modes was carried out by the potential energy distribution (PED) analysis among internal coordinates using the SHRINK program. According to DFT computations, the H(piv) molecule has an equilibrium structure of Cs symmetry with Гvib=26A'+19A''. The theoretical and experimental IR-spectra are satisfactorily agreed. The comparison of the ten intensities of highest bands in spectra allowed determining linear correlation between peaks position in experimental and modeling IR-spectra. It should be note the complicated composition of vibrational modes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here