
STUDY AND MODELING 4,4'-DIAMINODIPHENYLMETHANE SYNTHESIS
Author(s) -
Natalia Menshutina,
Igor Lebedev,
Evgeniy Lebedev,
Ratmir R. Dashkin,
Mikhail V. Shishanov,
Maxim L. Burdeyniy
Publication year - 2021
Publication title -
izvestiâ vysših učebnyh zavedenij. himiâ i himičeskaâ tehnologiâ/izvestiâ vysših učebnyh zavedenij. seriâ himiâ i himičeskaâ tehnologiâ
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.221
H-Index - 5
eISSN - 2500-3070
pISSN - 0579-2991
DOI - 10.6060/ivkkt.20216404.6314
Subject(s) - cellular automaton , work (physics) , computer science , automaton , process (computing) , mathematics , algorithm , thermodynamics , theoretical computer science , physics , operating system
The presented work is devoted to reactions of obtaining 4,4´-diaminodiphenylmethane in the presence of a catalyst. The work describes the importance of studying 4,4´-diaminodiphenylmethane obtaining process and possibility of cellular automata approach in modelling chemical reactions. Cellular automata model which allows to predict the kinetic curves of the studied 4,4´-diaminodiphenylmethane-obtaining reaction. Model reflects two processes that are observed in the system under study - the movement of reagents under the stirring and the reaction in the presence of a catalyst. The suggested model does not use complex calculations for operation and can be implemented using high-performance parallel computing, which will speed up calculations and reduce the requirements for computing resources. The developed model was used to carry out computational experiments under various conditions. Since the model contains a number of empirical parameters, first computational experiments were carried out, which made it possible to establish the relationship between the model parameters and real values. Then, computational experiments were carried out to predict the kinetic curves of the studied reactions and were compared with the corresponding experimental data. The suggested model is suitable for predicting 4,4´-diaminodiphenylmethane-obtaining reaction kinetics. Also, model can be the part of complex multiscale modeling from the molecule level to the level of the entire apparatus.