z-logo
open-access-imgOpen Access
Conversion of existing calorimetrically determined thermodynamic properties to the basis of the International Practical Temperature Scale of 1968
Author(s) -
Thomas B. Douglas
Publication year - 1969
Publication title -
journal of research of the national bureau of standards. section a. physics and chemistry
Language(s) - English
Resource type - Journals
eISSN - 2376-5704
pISSN - 0022-4332
DOI - 10.6028/jres.073a.035
Subject(s) - classification of discontinuities , thermodynamics , enthalpy , scale of temperature , heat capacity , scale (ratio) , basis (linear algebra) , thermodynamic temperature , gibbs free energy , entropy (arrow of time) , statistical physics , materials science , chemistry , mathematics , physics , mathematical analysis , geometry , quantum mechanics
Formulas are derived for converting the relative enthalpy, heat capacity, entropy, and Gibbs energy from the basis of one practical temperature scale to the basis of another, when these properties on either scale have been derived from calorimetric measurements of enthalpy as though that scale were the thermodynamic one. These formulas are directly applicable for converting certain other properties as well. The conversion relates the values of the property at the same numerical temperature on both scales. The formulas, given as exact infinite series, are applicable to widely differing scales, one of which may vary linearly with a temperature-measuring quantity such as electrical resistance. However, great simplification is well within most calorimetric accuracy when the conversion is from the International Practical Temperature Scale of 1948 to the corresponding scale of 1968, which has recently replaced it, provided the heat capacity is not changing abnormally rapidly, as in a transition region. For convenient application to conversion between these two scales, relatively simple numerical equations are derived giving the differences between the two scales at temperatures from 90 K to 10,000 K. The problem of avoiding the introduction of discontinuities with temperature in converted tables, arising from the existing discontinuities in the temperature derivative of the differences between the two scales, is discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here