Open Access
STATE OF THE ART IN HYDROGEN BOND
Author(s) -
Boaz G. Oliveira
Publication year - 2015
Publication title -
química nova
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.214
H-Index - 73
eISSN - 1678-7064
pISSN - 0100-4042
DOI - 10.5935/0100-4042.20150146
Subject(s) - state (computer science) , bond , business , computer science , finance , programming language
Along the historical background of science, the hydrogen bond became widely known as the universal interaction, thus playing a key role in many molecular processes. Through the available theoretical approaches, many of these processes can be unveiled on the basis of the molecular parameters of the subject intermolecular system, such as the variation of bond length and mainly the frequency shift observed in the proton donor. Supported by the natural bond analysis (NBO) with the quantification of the hybridization contributions, the structural deformations and vibrational effects cited above are also attributed to the outcome of the intermolecular interaction strength, which consequently can be estimated by means of the quantum theory of atoms in molecules (QTAIM) as well as evaluated by the symmetry-adapted perturbation theory (SAPT). Moreover, to identify the preferential interaction sites for proton donors and acceptors, the molecular electrostatic potential (MEP) is useful in this regard