z-logo
open-access-imgOpen Access
Lines on the surface in the quasi-hiperbolic space 11^S1/3
Author(s) -
V. B. Tsyrenova
Publication year - 2020
Publication title -
differencialʹnaâ geometriâ mnogoobrazij figur
Language(s) - English
Resource type - Journals
eISSN - 2782-3229
pISSN - 0321-4796
DOI - 10.5922/0321-4796-2020-51-14
Subject(s) - mathematics , chebyshev filter , geodesic , surface (topology) , hyperbolic geometry , tangent , parallel , space (punctuation) , hyperbolic space , chebyshev polynomials , mathematical analysis , pure mathematics , topology (electrical circuits) , geometry , combinatorics , differential geometry , computer science , operating system
Quasi-hyperbolic spaces are projective spaces with decaying abso­lute. This work is a continuation of the author's work [7], in which surfac­es in one of these spaces are examined by methods of external forms and a moving frame. The semi-Chebyshev and Chebyshev net­works of lines on the surface in quasi-hyperbolic space are considered. In this pa­per we use the definition of parallel transfer adopted in [6]. By analogy with Euclidean geometry, the semi-Chebyshev network of lines on the surface is the network in which the tangents to the lines of one family are carried parallel along the lines of another family. A Che­byshev network is a network in which tangents to the lines of each family are carried parallel along the lines of another family. We proved three theorems. In Theorem 1, we obtain a natural equa­tion for non-geodesic lines that are part of a conjugate semi-Chebyshev network on the surface so that tangents to lines of another family are transferred in parallel along them. In Theorem 2, the natural equation of non-geodesic lines in the Chebyshev network is obtained. In Theorem 3 we prove that conjugate Chebyshev networks, one family of which is nei­ther geodesic lines, nor Euclidean sections, exist on surfaces with the lati­tude of four functions of one argument.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here