z-logo
open-access-imgOpen Access
Elucidation and Identification of an Antifungal Compound from Pseudomonas aeruginosa DA3.1 Isolated from Soil in Vietnam
Author(s) -
Nguyễn Thị Trung,
Nguyen Tien Cuong,
Nguyễn Thị Thảo,
Đào Thị Mai Anh,
Đỗ Thị Tuyến
Publication year - 2020
Publication title -
jundishapur journal of microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.281
H-Index - 29
eISSN - 2008-4161
pISSN - 2008-3645
DOI - 10.5812/jjm.103792
Subject(s) - dept , carbon 13 nmr , proton nmr , rhizoctonia solani , fusarium , rhizoctonia , chemistry , ethyl acetate , fusarium oxysporum , chromatography , organic chemistry , biology , stereochemistry , horticulture
Background: Fusarium sp. and Rhizoctonia sp. fungi have been always threats to short-term crops. In Vietnam, corn and soybean suffer serious losses annually. Therefore, it is necessary to utilize an environmentally friendly antifungal compound that is highly effective against phytopathogenic fungi. Pseudomonas sp. is a popular soil bacterial strain and well known for its high antifungal activity. Objectives: This study was carried out to evaluate and assess the antifungal activity of a local bacterial strain namely DA3.1 that was later identified as Pseudomonas aeruginosa. This would be strong scientific evidence to develop an environmentally friendly biocide from a local microorganism strain for commercial use. Methods: The antifungal compound was purified from ethyl acetate extraction of deproteinized cell culture broth by a silica gel column (CH2Cl2/MeOH (0% - 10% MeOH)). The purity of the isolated compound was determined by HPLC, and its molecular structure was elucidated using spectroscopic experiments including one-dimensional (1D) (1H NMR, 13C NMR, DEPT) and two-dimensional (2D) (HMBC and HSQC) spectra. The activity of the purified compound against Fusarium sp. and Rhizoctonia sp. fungi was measured using the PDA-disk diffusion method, and its growth-promoting ability was evaluated using the seed germination test of corn and soybean. Results: The results showed that the antifungal compound produced by Pseudomonas aeruginosa DA3.1 had a retention factor (Rf) of 0.86 on thin layer chromatography (TLC). Based on the evidence of spectral data including proton nuclear magnetic resonance (1H NMR), carbon nuclear magnetic resonance (13C NMR), distortionless enhancement by polarization transfer (DEPT), heteronuclear multiple bond correlation (HMBC), and heteronuclear single quantum coherence (HSQC), the chemical structure was elucidated as phenazine-1-carboxylic. The purified compound showed inhibitory activity against F. oxysporum and R. solani and exhibited the ability of the germination of corn and soybean seeds. The results revealed the benefit of native P. aeruginosa DA3.1 and phenazine-1-carboxylic acid for use as a biocontrol agent, as well as a plant growth promoter. Conclusions: The antifungal compound isolated from local Pseudomonas DA3.1 was identified as phenazine-1-carboxylic acid that posed high antifungal activity and was a plant germination booster.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here