z-logo
open-access-imgOpen Access
Synthesis of Self-Assembled Noble Metal Nanoparticle Chains Using Amyloid Fibrils of Lysozyme as Templates
Author(s) -
Ziming Xu,
Lili Li,
Hou Li,
Faming Gao
Publication year - 2016
Publication title -
nanomaterials and nanotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.412
H-Index - 21
ISSN - 1847-9804
DOI - 10.5772/62182
Subject(s) - noble metal , materials science , nanoparticle , palladium , rhodium , lysozyme , transmission electron microscopy , platinum , chemical engineering , colloidal gold , spectroscopy , fibril , self assembly , nanotechnology , metal , chemistry , catalysis , organic chemistry , biochemistry , engineering , metallurgy , physics , quantum mechanics
We reported a facile method for preparing self-assembled noble metal nanoparticle chains by using lysozyme amyloid fibrils as a biotemplate in an aqueous environ‐ ment. The nanoparticle chains of gold (AuNPCs), palladi‐ um (PdNPCs), platinum (PtNPCs) and rhodium (RhNPCs), which are lysozyme fibrils coated by gold, palladium, platinum and rhodium nanoparticles, can be fabricated by simply reducing the corresponding metal salt precursors using NaBH4. Under the same molar ratio between salt precursors and fibrils, two types of morphologies of high- yield AuNPCs (thin- and thick- AuNPCs) were synthesized as a result of adjusting the fibrosis time and temperature in the final stage. Abundant PdNPCs with a length of several micrometres intertwisted with each other to form PdNPC networks. The growth of RhNPCs started from the inner surface of the fibrils and gradually spread to the whole fibre as superabundant rhodium nanoparticles (RhNPs) bound to the fibrils. Finally, PtNPCs at different growing periods were presented. The nanostructures were investigated by transmission electron microscope, UV-visible spectrosco‐ py, fluorescence spectroscopy, energy-dispersive X-ray spectroscopy and atomic force microscope

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom