3D Hand Gesture Analysis through a Real-Time Gesture Search Engine
Author(s) -
Shahrouz Yousefi,
Haibo Li
Publication year - 2015
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/60045
Subject(s) - computer science , gesture , orientation (vector space) , gesture recognition , artificial intelligence , computer vision , augmented reality , matching (statistics) , interaction technique , human–computer interaction , statistics , geometry , mathematics
3D gesture recognition and tracking are highly desired features of interaction design in future mobile and smart environments. Specifically, in virtual/augmented reality applications, intuitive interaction with the physical space seems unavoidable and 3D gestural interaction might be the most effective alternative for the current input facilities such as touchscreens. In this paper, we introduce a novel solution for real-time 3D gesture-based interaction by finding the best match from an extremely large gesture database. This database includes images of various articulated hand gestures with the annotated 3D position/orientation parameters of the hand joints. Our unique matching algorithm is based on the hierarchical scoring of the low-level edge-orientation features between the query frames and database and retrieving the best match. Once the best match is found from the database in each moment, the pre-recorded 3D motion parameters can instantly be used for natural interaction. The proposed bare-hand interaction technology performs in real time with high accuracy using an ordinary camera
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom