z-logo
open-access-imgOpen Access
Development of a Survivable Cloud Multi-Robot Framework for Heterogeneous Environments
Author(s) -
Isaac Olusegun Osunmakinde,
Vikash Ramharuk
Publication year - 2014
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/58891
Subject(s) - cloud computing , computer science , robot , robotics , artificial intelligence , distributed computing , disconnection , operating system , political science , law
Cloud robotics is a paradigm that allows for robots to offload computationally intensive and data storage requirements into the cloud by providing a secure and customizable environment. The challenge for cloud robotics is the inherent problem of cloud disconnection. A major assumption made in the development of the current cloud robotics frameworks is that the connection between the cloud and the robot is always available. However, for multi-robots working in heterogeneous environments, the connection between the cloud and the robots cannot always be guaranteed. This work serves to assist with the challenge of disconnection in cloud robotics by proposing a survivable cloud multi-robotics (SCMR) framework for heterogeneous environments. The SCMR framework leverages the combination of a virtual ad hoc network formed by robot-to-robot communication and a physical cloud infrastructure formed by robot-to-cloud communications. The quality of service (QoS) on the SCMR framework was tested and validated by determining the optimal energy utilization and time of response (ToR) on drivability analysis with and without cloud connection. The design trade-off, including the result, is between the computation energy for the robot execution and the offloading energy for the cloud execution

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here