Robust Unstructured Road Detection: The Importance of Contextual Information
Author(s) -
Erke Shang,
Xiangjing An,
Jian Li,
Lei Ye,
Hangen He
Publication year - 2013
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/55560
Subject(s) - computer science , helpfulness , support vector machine , artificial intelligence , unstructured data , key (lock) , road map , bayesian probability , machine learning , data mining , pattern recognition (psychology) , cartography , psychology , social psychology , big data , computer security , geography
Unstructured road detection is a key step in an unmanned guided vehicle (UGV) system for road following. However, current vision-based unstructured road detection algorithms are usually affected by continuously changing backgrounds, different road types (shape, colour), variable lighting conditions and weather conditions. Therefore, a confidence map of road distribution, one of contextual information cues, is theoretically analysed and experimentally generated to help detect unstructured roads. Two traditional algorithms, support vector machine (SVM) and k-nearest neighbour (KNN), are carried out to verify the helpfulness of the proposed confidence map. Following this, a novel algorithm, which combines SVM, KNN and the confidence map under a Bayesian framework, is proposed to improve the overall performance of the unstructured road detections. The proposed algorithm has been evaluated using different types of unstructured roads and the experimental results show its effectiveness
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom