
Gait Selection and Transition of Passivity-Based Bipeds with Adaptable Ankle Stiffness
Author(s) -
Yan Huang,
Qining Wang
Publication year - 2012
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/51533
Subject(s) - gait , ankle , stiffness , computer science , robot , physical medicine and rehabilitation , simulation , control theory (sociology) , medicine , engineering , artificial intelligence , structural engineering , control (management) , anatomy
Stable bipedal walking is one of the most important components of humanoid robot design, which can help us better understand natural human walking. In this paper, to study gait selection and gait transition of efficient bipedal walking, we proposed a dynamic bipedal walking model with an upper body, flat feet and compliant joints. The model can achieve stable cyclic motion with different walking gaits. The hip actuation and ankle stiffness behavior of the model are quite similar to those of human normal walking. In simulation, we studied the influence of hip actuation and ankle stiffness on walking performance of each gait. The effects of ankle stiffness on gait selection are also analyzed. Gait transition is realized by adjusting ankle stiffness during walking