z-logo
open-access-imgOpen Access
Optimization of the Workpiece Location in a Machining Robotic Cell
Author(s) -
António M. Lopes,
E. J. Solteiro Pires
Publication year - 2011
Publication title -
international journal of advanced robotic systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.394
H-Index - 46
eISSN - 1729-8814
pISSN - 1729-8806
DOI - 10.5772/45681
Subject(s) - computer science , genetic algorithm , machining , context (archaeology) , optimization problem , task (project management) , robot manipulator , mathematical optimization , energy consumption , robot , artificial intelligence , algorithm , mathematics , mechanical engineering , engineering , machine learning , paleontology , electrical engineering , systems engineering , biology
One important issue in a machining robotic cell is the location of the workpiece with respect to the robot. The feasibility of the task, the quality of the final work and the energy consumption, just to mention a few, are all dependent upon it. This can be formulated as an optimization problem where the objective functions are chosen in order to meet desired performance criteria. Typically, the complexity of the problems and the large number of optimization parameters that, usually, are involved, make the genetic algorithms an appropriate tool in this context. In this paper, two optimization problems are formulated: firstly, the power consumed by the manipulator is considered and the problem is solved using a single-objective genetic algorithm; then the stiffness of the manipulator is also included and the respective optimization problem is solved using a multi-objective genetic algorithm. Simulation results are presented for a parallel manipulator robotic cell

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom