z-logo
open-access-imgOpen Access
Role of Initial Crack Tip Shape, Plastic Compressibility and Strain Softening on Near-Tip Stress-Strain State in Fatigue Cracks during Simulation of a Finite Deformation based Elastic-Viscoplastic Constitutive Model
Author(s) -
Md Intaf ALAM,
Debashis Khan,
Satyabrat Pandey,
S. Phani Kumar
Publication year - 2022
Publication title -
medžiagotyra
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.208
H-Index - 24
eISSN - 2029-7289
pISSN - 1392-1320
DOI - 10.5755/j02.ms.28263
Subject(s) - materials science , crack tip opening displacement , hardening (computing) , strain hardening exponent , softening , crack closure , viscoplasticity , compressibility , crack growth resistance curve , composite material , constitutive equation , mechanics , plasticity , fracture mechanics , structural engineering , finite element method , physics , layer (electronics) , engineering
This paper deals with the effect of initial crack tip shape, plastic compressibility, and strain softening on near-tip stress-strain fields for a mode I crack subjected to fatigue loading under plane strain and small scale yielding. A finite strain-based elastic-viscoplastic constitutive equation with bilinear hardening and hardening-softening-hardening hardness functions is taken up for simulation. It is observed that plastic compressibility and strain softening have a significant impact on crack tip opening displacement (CTOD) and tip propagation. Furthermore, it has been viewed that the initial shape of a crack tip can significantly influence both the CTOD and the crack tip extension for the bilinear hardening material; however, with identical conditions for the hardening-softening-hardening material, the initial crack tip shape affects the fatigue crack growth much lesser though the CTOD is influenced considerably. In comparison to the crack growth in the plastically incompressible hardening-softening-hardening solids, the variation of the crack growth (with respect to the tip curvature radius) is more and peculiar in the corresponding plastically compressible solid. To explain and to get a better insight of the crack tip deformation, the near-tip plastic strain and hydrostatic stress have been illustrated.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here