
Análise Comparativa de Algoritmos de Mineração de Texto Aplicados a Históricos de Contas Públicas
Author(s) -
Breno Santana Santos
Publication year - 2015
Publication title -
anais do simpósio brasileiro de sistemas de informação (sbsi)
Language(s) - Portuguese
Resource type - Conference proceedings
DOI - 10.5753/sbsi.2015.5874
Subject(s) - humanities , physics , computer science , philosophy
Grandes massas de dados são geradas pelas aplicações que apoiam as atividades rotineiras dos órgãos públicos. Uma parcela significativa destes dados está em formato textual, sendo cabível o uso da Mineração de Texto, para extrair conhecimento potencialmente útil e previamente desconhecido. O objetivo deste artigo é avaliar o desempenho e qualidade de 3 algoritmos de mineração de texto aplicados à classificação de irregularidades em históricos de contas públicas, custodiadas pelo Tribunal de Contas de Sergipe. Para realizar a avaliação, foi desenvolvida uma ferramenta que implementa os algoritmos, bem como foi realizado um estudo de caso que avaliou métricas de desempenho e qualidade, tais como: Tempo Médio de Execução, Acurácia, Precisão, Cobertura e Medida F. Os resultados evidenciaram que o algoritmo Naïve Bayes Multinomial, com Frequência Inversa, foi a melhor abordagem para detectar evidências de irregularidades em pagamentos de diárias.