
Combinando Técnicas de Mineração de Dados para Melhorar o Processo de Detecção Automática de Arritmia Cardíaca
Author(s) -
Cristiane Heredia Gomes,
Leonardo Rocha
Publication year - 2018
Publication title -
revista eletrônica de iniciação científica
Language(s) - Portuguese
Resource type - Journals
ISSN - 1519-8219
DOI - 10.5753/reic.2018.1060
Subject(s) - physics , computer science , humanities , mathematics , philosophy
Algoritmos de Classificação Automática são ferramentas promissoras no auxílio de diagnósticos de Arritmia Cardíaca (AC), entretanto sofrem com dois problemas: (1) muitos atributos numéricos gerados na decomposição de um Eletrocardiograma (ECG); e (2) o número de pacientes com ACs é muito menor do que aqueles tidos como normais (bases desbalanceadas). Nesse trabalho, combinamos técnicas de mineração de dados (i.e. clustering, feature selection e oversampling) para criar modelos de classificação mais eficazes. Em nossas avaliações, utilizando uma coleção da UCI, melhoramos significativamente a eficácia do algoritmo Random Forest, alcançando uma acurácia de 88%, valor superior ao melhor já reportado na literatura.