
Predição de Evasão Escolar na Licenciatura em Computação
Author(s) -
Hiago Oliveira De Jesus,
Luis Cuevas Rodriguez,
Almir de Oliveira Costa
Publication year - 2021
Publication title -
revista brasileira de informática na educação
Language(s) - Portuguese
Resource type - Journals
eISSN - 2317-6121
pISSN - 1414-5685
DOI - 10.5753/rbie.2021.29.0.255
Subject(s) - computer science
No primeiro ano de graduação e ao longo do curso de Licenciatura em Computação, os alunos expressam grandes dificuldades nas disciplinas de programação, seja pela ausência de conhecimento prévio, dificuldades na resolução de problemas, raciocínio lógico-matemático, abstração, entre outros fatores desconhecidos. Os dados dos históricos acadêmicos dos alunos, representam dados relevantes para prever o risco de evasão na Licenciatura em Computação da Universidade do Estado do Amazonas. Diante dos elevados índices de reprovações nas disciplinas do curso, foi levantada a seguinte hipótese "É possível prever os alunos evadidos na Licenciatura em Computação?". Este artigo apresenta uma mineração de dados educacionais, cujo objetivo é a previsão de alunos com risco de evasão. Esta pesquisa seguiu a metodologia de descoberta de conhecimento em base de dados, que consistiu em selecionar e preparar os dados para o treinamento do modelo preditivo de rede neural de múltiplas camadas. Os resultados obtidos com modelo preditivo foram avaliados, por meio de métricas de avaliação de desempenho, identificou-se com 98% de precisão os alunos com risco de evadir do curso.