
The impact of chromatin modification on the development of chronic complications in patients with diabetes
Author(s) -
Małgorzata Wegner,
Maria Pioruńska-Stolzmann,
Paweł P. Jagodzińśki
Publication year - 2015
Publication title -
postępy higieny i medycyny doświadczalnej
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.275
H-Index - 34
eISSN - 1732-2693
pISSN - 0032-5449
DOI - 10.5604/17322693.1165198
Subject(s) - epigenetics , diabetes mellitus , inflammation , histone , chromatin , medicine , dna methylation , disease , bioinformatics , endocrinology , biology , gene , gene expression , genetics
Diabetes is a chronic, metabolic disease. Over 347 million people worldwide have diabetes. Chronic complications (retinopathy, nephropathy or neuropathy) are the major dangerous outcome of this disease. Recent studies indicate a significant role of epigenetic regulation in the development of chronic complications in patients with diabetes. Hyperglycemia could cause abnormal regulation of the activity of enzymes participating in the post-translational histone modifications (PTHMs) and initiation of changes in patterns of DNA methylation. It leads to modification of chromatin structure. These epigenetic abnormalities result in changes in the expression of genes involved in development of chronic inflammation, such as NF-KAPPAB (nuclear factor kappaB gene), TNFα (tumor necrosis factor a gene), IL6 (interleukin 6 gene) or MCP1 (monocyte chemoattractant protein 1 gene). It enhances endothelial cell dysfunction, which plays an important role in development of chronic, diabetic complications. In addition, caused by hyperglycemia epigenetic modifications changes in structure of chromatin explains "metabolic memory", a phenomenon of presence of pathological pathways related to the prolonged hyperglycemia in the past, despite maintaining good metabolic control later on.