z-logo
open-access-imgOpen Access
MANUFACTURING AND QUALITY ASSURANCE OF LIGHTWEIGHT PARTS IN MASS PRODUCTION
Author(s) -
Lothar Kroll,
Adam Czech,
Rainer Wallasch
Publication year - 2018
Publication title -
journal of machine engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.588
H-Index - 7
eISSN - 2391-8071
pISSN - 1895-7595
DOI - 10.5604/01.3001.0012.4606
Subject(s) - quality assurance , modular design , context (archaeology) , manufacturing engineering , computer science , thermoplastic composites , production line , mechanical engineering , thermoplastic , engineering , materials science , composite material , operations management , paleontology , external quality assessment , biology , operating system
Production-related preliminary damage and residual stresses have significant effects on the functions and the damage development in fiber composite components. For this reason, it is important, especially for the safety-relevant components, to check each item. This task becomes a challenge in the context of serial production, with its growing importance in the field of lightweight components. The demand for continuous-reinforced thermoplastic composites increases in various industrial areas. According to this, an innovative Continuous Orbital Winding (COW) process was carried out within the framework of the Federal Cluster of Excellence EXC 1075 “MERGE Technologies for Multifunctional Lightweight Structures”. COW is aiming for mass-production-suited processing of special semi-finished fiber reinforced thermoplastic materials. This resource-efficient and function-integrated manufacturing process contains a combination of thermoplastic tape-winding with automated thermoplastic tape-laying technology. The process has a modular concept, which allows implementing other special applications and technologies, e.g. integration of different sensor types and high-speed automated quality inspection. The results show how to control quality and improve the stability of the COW process for large-scale production. This was realized by developing concepts of a fully integrated quality-testing unit for automatic damage assessment of composite structures. For this purpose, the components produced in the COW method have been examined for imperfections. This was performed based on obtained results of non-destructive or destructive materials testing.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here