z-logo
open-access-imgOpen Access
Comparative study between synthetic and dairy wastewaters in single chamber microbial fuel cell for power generation
Author(s) -
Payel Choudhury,
Ria Majumdar,
Tarun Kanti Bandyopadhyay
Publication year - 2021
Publication title -
journal of electrochemical science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.236
H-Index - 6
ISSN - 1847-9286
DOI - 10.5599/jese.1030
Subject(s) - microbial fuel cell , wastewater , chemical oxygen demand , pulp and paper industry , chemistry , ammonium , lactose , nitrogen , environmental science , food science , environmental engineering , organic chemistry , electrode , anode , engineering
To investigate the performance of microbial fuel cell (MFC) with a single-chamber membrane, Pseudomonas aeruginosa is used as a bio catalyst for various synthetic wastewaters rich in carbohydrate and is compared with real dairy wastewater in this experiment. Therefore, the choice of appropriate carbon, nitrogen, NaCl, inoculum content, temperature, and pH process parameters are used for preparing synthetic wastewater was agreed upon by one-variable-at-a time approach. Maximum levels of voltage generation attained from the synthetic wastewater was 485 mV when supple­mented with 1.5 % of lactose as a source of carbon, 0.3 % of ammonium chloride as a decent nitrogen source, 0.03 % of NaCl, inoculum concentration of 3 %, the temperature at 37 oC and pH 7. On the other hand, the maximum voltage attained with real dairy wastewater was 561 mV with high chemical oxygen demand (COD) value of 801 mg l-1. The maximum power density obtained from dairy wastewater was 73.54 mW m-2. Thus, High voltage achieved for MFC operating with real dairy wastewater suggests that it can be used not only for the industrial application to generate more renewable power, but also for the wastewater treatment carried out at the same time.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here