z-logo
open-access-imgOpen Access
Influence of change in the proportion of H1 histone variants on microsporogenesis and development of male gametophyte in transgenic plants of tobacco (Nicotiana tabacum L.)
Author(s) -
Joanna Ślusarczyk,
Andrzej Wierzbicki,
Marcin R. Przewloka,
Teresa Tykarska,
Andrzej Jerzmanowski,
Mieczysław Kuraś
Publication year - 2011
Publication title -
acta societatis botanicorum poloniae
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.297
H-Index - 29
eISSN - 2083-9480
pISSN - 0001-6977
DOI - 10.5586/asbp.2003.004
Subject(s) - pollen , biology , nicotiana tabacum , meiosis , gametophyte , histone , genetics , botany , meiocyte , gene
As continuation of investigations in to the mechanism of the role of the H1 histone, which is a crucial protein component chromosomes of all eukaryotes, transgenic tobacco plants with different levels of the H1 histone variants were examined. Tobacco has six sequential variants of the H1 histone: two major ones (H1A and H1B), constituting ca. 90% of all H1, and four minor ones (H1C, H1D, H1E and H1F), occurring in very small quantities. The following groups of plants were examined: K - control group with a full set of histone variants; -AB -with the A and B variants removed; -ABCD - with the A, B, C and D variants removed; and -CD - with the C and D variants removed. The analysis of microsporogenesis in those plants, based on preparations squeezed in acetoorcein, revealed the asynchronous course of meiosis in -AB and -ABCD plants, occurrence of chromosomal aberration, and, consequently, the formation of sterile pollen grains (accordingly: 84,4% and 81,4%). In -CD plants, the percentage of aberration and sterile pollen grains was similar to the control material. Electron microscope observations of microsporogenesis showed ultrastructural changes. In -AB and -ABCD plants, a major portion of the pollen grains were degraded. The smallest number of degraded pollen grains, in comparison with the control, was found in the -CD group

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom