z-logo
open-access-imgOpen Access
Influence of different spectral ranges of light and Ca2+ -channel blockers on Ca2+ and K+ levels in Phaseolus coccineus L. pulvini
Author(s) -
Jan Białçzyk,
Z. Lechowski
Publication year - 2014
Publication title -
acta societatis botanicorum poloniae
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.297
H-Index - 29
eISSN - 2083-9480
pISSN - 0001-6977
DOI - 10.5586/asbp.1992.022
Subject(s) - chemistry , verapamil , channel blocker , biophysics , nuclear chemistry , ion transporter , analytical chemistry (journal) , calcium , biochemistry , membrane , chromatography , biology , organic chemistry
The effect of different spectral ranges of light on the modification of transport processes in isolated parts of Phaseolus coccineus pulvini was analysed in a bath medium by determining the Ca2+ and K+ contents. After 1 h incubation of separated fragments of the extensor and flexor in solutions containing deionized water, medium, or medium with verapamil or nifedipine, the investigated material was irradiated with monochromatic light of different wavelengths. The concentration of Ca2+, K+ and the pH value were determined in the medium. The obtained results suggest the occurrence of a specific coupling between the concentration of Ca2+ and K+ dependend on the wavelength of the applied light and part of the pulvinus. Certain spectral ranges of light brought about opposite effects on ion transport in opposite parts of the pulvinus. Changes in the pH of mediums containing isolated parts of the pulvini part to different effects of blue, red, and far-red light on the activity of H+-pumps located in the motor cells. The use of verapamil and nifedipine, specific Ca2+-channel blockers, made it possible to demonstrate the significant effect of Ca2+ on the activity and functioning of K+ -channels. The two types of inhibitors decreased the influx of Ca2+ and K+ to motor cells of the pulvini, however they did not limit the efflux of ions to the medium. The obtained results suggest that Ca2+ ions take part in transduction of the light signal. It seems probable that the action of blue light is also mediated by part of the Ca2+ ions

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here