
Free proline accumulation in leaves of cultivated plant species under water deficit conditions
Author(s) -
Hanna Bandurska
Publication year - 2013
Publication title -
acta agrobotanica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.4
H-Index - 9
eISSN - 2300-357X
pISSN - 0065-0951
DOI - 10.5586/aa.2004.006
Subject(s) - proline , poinsettia , dehydration , hordeum vulgare , brassica oleracea , horticulture , biology , botrytis , brassica , chemistry , water content , botany , agronomy , amino acid , poaceae , botrytis cinerea , biochemistry , geotechnical engineering , inflorescence , bract , engineering
The effect of water deficit caused by soil drought on the content of free proline as well as the degree of cell membrane damages in the leaves of three cultivated plant species having different farm usefulness and water requirements have been studied. The used pIants were: poinsettia (Euphorbia pulcherrima Willd., 'Regina' and 'Cortez') grown for decorative purposes, a green vegetable of broccoli (Brassica oleracea var. botrytis, subvar. cymosa, 'Colonel' and 'Marathon') and a cereal plant of barley (the wild form Hordeum spontaneumm and Hordeum vulgaree 'Maresi'). The examined species differed in the size of the experienced stress. the Iargest RWC reduction was found iii broccoli leaves, while somewhat smaller - in barley. In poinsettia leaves, the reduction of RWC level was not large or did not occur at all. The accumulation of free proline in the species under study was also variable. The largest amount of this amino acid tended to accumulate in broccoli leaves, whereas the increase of its level took place only at a strong dehydration of tissues. The increase of proline level was smaller in barley leaves than in broccoli, but that was found already at a smalI dehydration of tissues. In poinsettia leaves, a several f`old increase of proline level was found at the early stage of the stress. The level of that amino acid gradually increased at consecutive times and did not depend on tissue dehydration. Damage of cell membranes amounted to 8.5-9.5% in barley leaves, about 3% in brocolli and to 0-2.6% in poinsettia. The role of proline in prevention of leaf dehydration and in alleviation of dehydration effects in the studied species has been discussed