z-logo
open-access-imgOpen Access
Anticipating corporate’s distresses
Author(s) -
Flávio Barboza,
Denize Lemos Duarte,
Michele Aparecida Cunha
Publication year - 2022
Publication title -
exacta
Language(s) - Portuguese
Resource type - Journals
eISSN - 1983-9308
pISSN - 1678-5428
DOI - 10.5585/exactaep.2021.17494
Subject(s) - humanities , economics , political science , philosophy
O objetivo deste estudo é apresentar um modelo de previsão de Dificuldades Financeiras (DF) a partir da perspectiva das técnicas de aprendizado de máquina (TAMs). Aplicamos e comparamos os modelos XGBoost, Random Forest e Regressão Logística usando indicadores financeiros para buscar melhores previsões das DFs um ano antes do evento em empresas latino-americanas no período de 2000 a 2017. Nossos resultados mostraram que as TAMs superam o modelo de logit, atingindo uma precisão geral de 96 % (XGboost). Além disso, cinco indicadores foram relevantes para o seu sucesso. O estudo amplia o conhecimento e as discussões ao enfocar o poder preditivo na comparação entre os modelos, destacando os benefícios do uso de algoritmos aplicados à pesquisa financeira. Auxilia na gestão de riscos, na prevenção de perdas, permitindo maior equilíbrio e saúde para o sistema financeiro’, que contribui para o desenvolvimento econômico, social e sustentável de uma sociedade.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here