z-logo
open-access-imgOpen Access
On generalized Fibonacci and Lucas hybrid polynomials
Author(s) -
N. ROSA AIT-AMRANE,
Hacène Belbachir,
ELİF TAN
Publication year - 2022
Publication title -
turkish journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.454
H-Index - 27
eISSN - 1303-6149
pISSN - 1300-0098
DOI - 10.55730/1300-0098.3254
Subject(s) - fibonacci number , fibonacci polynomials , lucas number , mathematics , recurrence relation , generalization , representation (politics) , wilson polynomials , classical orthogonal polynomials , orthogonal polynomials , algebra over a field , difference polynomials , pisano period , discrete orthogonal polynomials , matrix representation , identity (music) , pure mathematics , combinatorics , mathematical analysis , group (periodic table) , chemistry , organic chemistry , politics , political science , law , physics , acoustics

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here