
A machine learning approach for predicting molecular energy
Author(s) -
John T. Barber,
Raymond Holsapple
Publication year - 2020
Publication title -
proceedings of the west virginia academy of science
Language(s) - English
Resource type - Journals
eISSN - 2473-0386
pISSN - 0096-4263
DOI - 10.55632/pwvas.v92i1.629
Subject(s) - random forest , mean squared error , artificial intelligence , computer science , hyperparameter , gradient boosting , molecular descriptor , regression , machine learning , linear regression , feature (linguistics) , pattern recognition (psychology) , quantitative structure–activity relationship , mathematics , statistics , linguistics , philosophy