z-logo
open-access-imgOpen Access
On the Sum of Distance Laplacian Eigenvalues of Graphs
Author(s) -
S. Pirzada,
Saleem Khan
Publication year - 2021
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.54.2023.4120
Subject(s) - mathematics , combinatorics , resistance distance , eigenvalues and eigenvectors , laplacian matrix , distance matrix , laplace operator , vertex (graph theory) , diagonal matrix , diagonal , connectivity , algebraic connectivity , order (exchange) , graph , matrix (chemical analysis) , upper and lower bounds , wiener index , discrete mathematics , mathematical analysis , graph power , geometry , physics , line graph , materials science , finance , quantum mechanics , economics , composite material
Let $G$ be a connected graph with $n$ vertices, $m$ edges and having diameter $d$. The distance Laplacian matrix $D^{L}$ is defined as $D^L=$Diag$(Tr)-D$, where Diag$(Tr)$ is the diagonal matrix of vertex transmissions and $D$ is the distance matrix of $G$. The distance Laplacian eigenvalues of $G$ are the eigenvalues of $D^{L}$ and are denoted by $\delta_{1}, ~\delta_{1},~\dots,\delta_{n}$. In this paper, we obtain (a) the upper bounds for the sum of $k$ largest and (b) the lower bounds for the sum of $k$ smallest non-zero, distance Laplacian eigenvalues of $G$ in terms of order $n$, diameter $d$ and Wiener index $W$ of $G$. We characterize the extremal cases of these bounds. As a consequence, we also obtain the bounds for the sum of the powers of the distance Laplacian eigenvalues of $G$.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom