
On the Diophantine Equation Fn = x^a \pm x^b \pm 1 in Mersenne and Fermat Numbers
Author(s) -
Carlos A. Gómez
Publication year - 2021
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.53.2022.3973
Subject(s) - mersenne prime , fibonacci number , mathematics , fermat number , fermat's last theorem , diophantine equation , sequence (biology) , fermat's theorem on sums of two squares , wieferich prime , combinatorics , discrete mathematics , arithmetic , brouwer fixed point theorem , danskin's theorem , fixed point theorem , genetics , biology
In this article we investigate on the representation of Fibonacci numbers in the form x^a \pm x^b pm 1, for x in the sequence of Mersenne and Fermat numbers.