
Certain Laguerre-based Generalized Apostol Type Polynomials
Author(s) -
Junesang Choi,
Nabiullah Khan,
Talha Usman
Publication year - 2020
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.53.2022.3491
Subject(s) - laguerre polynomials , mathematics , classical orthogonal polynomials , discrete orthogonal polynomials , orthogonal polynomials , wilson polynomials , difference polynomials , pure mathematics , type (biology) , algebra over a field , ecology , biology
A variety of polynomials, their extensions and variants have been extensively investigated, due mainly to their potential applications in diverse research areas. In this paper, we aim to introduce Laguerre-based generalized Apostol type polynomials and investigate some properties and identities involving them. Among them, some differential-recursive relations for the Hermite-Laguerre polynomials, which are expressed in terms of generalized Apostol type numbers and the Laguerre-based generalized Apostol type polynomials, an implicit summation formula and addition-symmetry identities for the Laguerre-based generalized Apostol type polynomials are presented. The results presented here, being very general, are pointed out to reduce to yield some known or new formulas and identities for relatively simple polynomials and numbers.