
Best approximation of conjugate of a function in generalized Zygmund
Author(s) -
Hare Krishigam
Publication year - 2019
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.50.2019.3006
Subject(s) - mathematics , conjugate , fourier series , product (mathematics) , class (philosophy) , conjugate fourier series , pure mathematics , function (biology) , series (stratigraphy) , euler's formula , fourier transform , mathematical analysis , fourier analysis , geometry , paleontology , short time fourier transform , artificial intelligence , evolutionary biology , computer science , biology
In this paper, we, for the very first time, study the error estimates of conjugate of a function ~g of g(2-periodic) in generalized Zygmund class Y wz (z 1); by Matix-Euler (TEq) product operatorof conjugate Fourier series. In fact, we establish two theorems on degree of approximation of afunction ~g of g (2-periodic) in generalized Zygmund class Y wz (z 1); by Matix-Euler (TEq)product means of its conjugate Fourier series. Our main theorem generalizes three previouslyknown results. Thus the results of [7], [8] and [26] become the particular cases of our Theorem2.1. Some corollaries are also deduced from our main theorem.