z-logo
open-access-imgOpen Access
Certain properties of rational functions involving Bessel functions
Author(s) -
Rasoul Aghalary,
Ali Ebadian,
Zahra Oroujy
Publication year - 2012
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.43.2012.814
Subject(s) - bessel function , mathematics , order (exchange) , rational function , beta (programming language) , combinatorics , function (biology) , unit (ring theory) , operator (biology) , mathematical analysis , mathematical physics , pure mathematics , chemistry , biochemistry , mathematics education , finance , repressor , evolutionary biology , computer science , transcription factor , gene , economics , biology , programming language
Let $g_{upsilon}(z)$ be the classical Bessel function of the first kind of order $upsilon$ and $f$ be an analytic function defined on the unit disc $Delta$. Suppose the operator $H(f)$ be defined by $H(f)(z)=frac{z}{frac{z}{f(z)}*frac{g_{upsilon}(z)}{z}}$. In this paper we identify subfamily $M_{n}(alpha,eta)$ of univalent functions and obtain conditions on the parameter $upsilon$ such that $fin M_{n}(alpha,eta)$ implies $H(f)in M_{n}(alpha,eta)$

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom