z-logo
open-access-imgOpen Access
A unuqueness theorem for Sturm-Lioville operators with eigenparameter dependent boundary conditions
Author(s) -
YuPing Wang
Publication year - 2012
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.43.2012.1024
Subject(s) - mathematics , lambda , uniqueness , interval (graph theory) , boundary value problem , function (biology) , uniqueness theorem for poisson's equation , boundary (topology) , inverse , sturm–liouville theory , mathematical analysis , combinatorics , geometry , physics , quantum mechanics , evolutionary biology , biology
In this paper, we discuss the inverse problem for Sturm- Liouville operators with boundary conditions having fractional linear function of spectral parameter on the finite interval $[0, 1].$ Using Weyl m-function techniques, we establish a uniqueness theorem. i.e., If q(x) is prescribed on $[0,frac{1}{2}+alpha]$ for some $alphain [0,1),$ then the potential $q(x)$ on the interval $[0, 1]$ and fractional linear function $frac{a_2lambda+b_2}{c_2lambda+d_2}$  of the boundary condition are uniquely determined by a subset $Ssubset sigma (L)$ and fractional linear function $frac{a_1lambda+b_1}{c_1lambda+d_1}$ of the boundary condition

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom