z-logo
open-access-imgOpen Access
A subclass of harmonic functions with negative coefficients defined by Dziok-Srivastava operator
Author(s) -
G. Murugusundaramoorthy,
K. Vijaya,
B. A. Frasin
Publication year - 2011
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.42.2011.231
Subject(s) - mathematics , lambda , extreme point , operator (biology) , subclass , class (philosophy) , distortion (music) , harmonic , harmonic function , pure mathematics , discrete mathematics , combinatorics , mathematical analysis , cmos , repressor , artificial intelligence , electronic engineering , amplifier , chemistry , computer science , antibody , optics , engineering , biology , biochemistry , quantum mechanics , transcription factor , immunology , physics , gene
Making use of the Dziok-Srivastava operator, we introduce the class $% mathcal{R}_{overline{mathcal{H}}}^{p,q}([alpha _1],lambda ,gamma )$ of complex valued harmonic functions. We investigate the coefficient bounds, distortion inequalities , extreme points and inclusion results for this class

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here