
A subclass of harmonic functions with negative coefficients defined by Dziok-Srivastava operator
Author(s) -
G. Murugusundaramoorthy,
K. Vijaya,
B. A. Frasin
Publication year - 2011
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.42.2011.231
Subject(s) - mathematics , lambda , extreme point , operator (biology) , subclass , class (philosophy) , distortion (music) , harmonic , harmonic function , pure mathematics , discrete mathematics , combinatorics , mathematical analysis , cmos , repressor , artificial intelligence , electronic engineering , amplifier , chemistry , computer science , antibody , optics , engineering , biology , biochemistry , quantum mechanics , transcription factor , immunology , physics , gene
Making use of the Dziok-Srivastava operator, we introduce the class $% mathcal{R}_{overline{mathcal{H}}}^{p,q}([alpha _1],lambda ,gamma )$ of complex valued harmonic functions. We investigate the coefficient bounds, distortion inequalities , extreme points and inclusion results for this class
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom