Open Access
A subclass of harmonic functions with negative coefficients defined by Dziok-Srivastava operator
Author(s) -
G. Murugusundaramoorthy,
K. Vijaya,
B. A. Frasin
Publication year - 2011
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.42.2011.231
Subject(s) - mathematics , lambda , extreme point , operator (biology) , subclass , class (philosophy) , distortion (music) , harmonic , harmonic function , pure mathematics , discrete mathematics , combinatorics , mathematical analysis , cmos , repressor , artificial intelligence , electronic engineering , amplifier , chemistry , computer science , antibody , optics , engineering , biology , biochemistry , quantum mechanics , transcription factor , immunology , physics , gene
Making use of the Dziok-Srivastava operator, we introduce the class $% mathcal{R}_{overline{mathcal{H}}}^{p,q}([alpha _1],lambda ,gamma )$ of complex valued harmonic functions. We investigate the coefficient bounds, distortion inequalities , extreme points and inclusion results for this class