
On the set of $ \alpha $, $ p $-bounded variation of order $ h $
Author(s) -
Bruno de Malafosse
Publication year - 2007
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.38.2007.83
Subject(s) - mathematics , alpha (finance) , bounded function , variation (astronomy) , order (exchange) , set (abstract data type) , combinatorics , discrete mathematics , statistics , computer science , mathematical analysis , construct validity , physics , finance , astrophysics , economics , programming language , psychometrics
In this paper we first explicit a subset of the set $ (l_p,l_u) $ for $ 1le p0 $ real, generalizing the well-known set of $ p $-bounded variation $ bv_p=l_p(Delta) $, and characterize martix transformations mapping from $ bv_p^h(alpha) $ to $ bv_u^k(eta) $ for $ 1le pleinfty $ and $