z-logo
open-access-imgOpen Access
Annihilator-semigroup rings
Author(s) -
D. D. Anderson,
Victor Camillo
Publication year - 2003
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.34.2003.313
Subject(s) - annihilator , mathematics , semigroup , ring (chemistry) , multiplicative function , pure mathematics , commutative ring , commutative property , discrete mathematics , ideal (ethics) , algebra over a field , mathematical analysis , law , chemistry , organic chemistry , political science
Let $ R $ be a commutative ring with 1. We define $ R $ to be an annihilator-semigroup ring if $ R $ has an annihilator-Semigroup $ S $, that is, $ (S, cdot) $ is a multiplicative subsemigroup of $ (R, cdot) $ with the property that for each $ r in R $ there exists a unique $ s in S $ with $ 0 : r = 0 : s $. In this paper we investigate annihilator-semigroups and annihilator-semigroup rings

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom