On a subclass of Bazileviv c functions
Author(s) -
Suzeini Abdul Halim
Publication year - 2002
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.33.2002.288
Subject(s) - subclass , mathematics , combinatorics , discrete mathematics , medicine , immunology , antibody
For $ alpha>0$, $ 0le eta<1$, we denote $ B_1(alpha,eta)$ to be the class of normalised analytic functions satisfying the condition $ ReBig({f(z)over z}Big)^{alpha-1}f'(z)>eta$ for $ z$ in the unit disc $ D={z:|z|<1}$. Sharp estimates for $ ReBig({f(z)over z}Big)^alpha$ is established. In fact a more generalished result concerning iterated integrals is obtained
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom