
On a subclass of Bazileviv c functions
Author(s) -
Suzeini Abdul Halim
Publication year - 2002
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.33.2002.288
Subject(s) - subclass , mathematics , combinatorics , discrete mathematics , medicine , immunology , antibody
For $ alpha>0$, $ 0le eta<1$, we denote $ B_1(alpha,eta)$ to be the class of normalised analytic functions satisfying the condition $ ReBig({f(z)over z}Big)^{alpha-1}f'(z)>eta$ for $ z$ in the unit disc $ D={z:|z|<1}$. Sharp estimates for $ ReBig({f(z)over z}Big)^alpha$ is established. In fact a more generalished result concerning iterated integrals is obtained