z-logo
open-access-imgOpen Access
On a subclass of Bazileviv c functions
Author(s) -
Suzeini Abdul Halim
Publication year - 2002
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.33.2002.288
Subject(s) - subclass , mathematics , combinatorics , discrete mathematics , medicine , immunology , antibody
For $ alpha>0$, $ 0le eta<1$, we denote $ B_1(alpha,eta)$ to be the class of normalised analytic functions satisfying the condition $ ReBig({f(z)over z}Big)^{alpha-1}f'(z)>eta$ for $ z$ in the unit disc $ D={z:|z|<1}$. Sharp estimates for $ ReBig({f(z)over z}Big)^alpha$ is established. In fact a more generalished result concerning iterated integrals is obtained

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here