z-logo
open-access-imgOpen Access
On $ (J, p_n) $ summability of fourier series
Author(s) -
Satish Chandra
Publication year - 2001
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.32.2001.378
Subject(s) - mathematics , fourier series , series (stratigraphy) , combinatorics , fourier transform , pi , mathematical analysis , geometry , paleontology , biology

In this paper we prove the following two theorems for $ | J, p_n | $ summability of fourier series, which generalizes many previous result:

Theorem 1.  If

$$ Phi (t) = int_t^{pi} frac{phi (u)}{u} du = o { p (1- frac{1}{t} ) } ~~~~ (t o 0) $$

then the Fourier series for $ t = x $ is summable $ (J, p_n) $ to sum $ s $.

Theorem 2.  If

$$ G(t) = int_t^{pi} frac{g(u)}{u} du = o { p(1-frac{1}{t}) } ~~~~ (t o 0) $$

then the differentiated Fourier series is summable $ (J, p_n) $ to the value $ C $.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom