z-logo
open-access-imgOpen Access
On meromorphic $ \alpha $-close-to-convex function
Author(s) -
B. Bharati,
Rajalakshmi Rajagopal
Publication year - 2001
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.32.2001.360
Subject(s) - meromorphic function , combinatorics , mathematics , alpha (finance) , regular polygon , function (biology) , pure mathematics , geometry , statistics , construct validity , evolutionary biology , biology , psychometrics

Let $ B(alpha) $ denote the class of all functions $ f $ meromorphic in the unit disc $ E $ with $ z f(z) e 0 $, $ z^2 f'(z) e 0 $ in $ E $ satisfying the condition

$$ int_{heta_1}^{heta_2} Re left{ alpha (1+z frac{f''(z) }{f'(z)} +(1- alpha) z frac{f'(z) }{f(z)} ight} d heta < pi $$

where $ 0 le heta_1 < heta_2 le heta_2 + 2 pi $, $ z = re^{i heta} $, $ r < 1 $ and $ alpha $ is a non-negative real numbers. We call $ f in B (alpha) $ a meromorphic $ alpha $-colse-to-convex function. This paper pertains to the study of some interesting properties of the class $ B (alpha) $.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom