
Convergence of an Ishikawa iteration scheme for nonlinear quasi-contractive mappings in convex metric spaces
Author(s) -
K. P. R. Sastry,
G. V. R. Babu,
Ch. Srinivasa Rao
Publication year - 2001
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.32.2001.353
Subject(s) - mathematics , regular polygon , convergence (economics) , nonlinear system , metric space , scheme (mathematics) , fixed point theorem , metric (unit) , pure mathematics , fixed point , space (punctuation) , discrete mathematics , mathematical analysis , geometry , operations management , physics , quantum mechanics , economics , economic growth , linguistics , philosophy
In this paper, we show that the Ishikawa iteration scheme for a nonlinear quasicontractive selfmap of a nonempty closed convex subset of a complete convex metric space, converges to the unique fixed point. Our theorem generalizes Ciric's result (1999) and partially solves an open problem of Ciric [5]