
CERTAIN CLASSES OF ANALYTIC AND MULTIVALENT FUNCTIONS
Author(s) -
H. M. Rossen,
H. M. Srivástava,
M. K. Aouf
Publication year - 1998
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.29.1998.4275
Subject(s) - mathematics , analytic function , unit disk , distortion (music) , combinatorics , unit (ring theory) , object (grammar) , alpha (finance) , discrete mathematics , pure mathematics , physics , statistics , computer science , mathematics education , amplifier , construct validity , artificial intelligence , psychometrics , optoelectronics , cmos
The main object of the present paper is to investigate the special classes
\[\mathcal P_\alpha^*(p, A, B) \text { and } \mathcal R_\alpha^*(p, A, B) \]
\[(0\le \alpha<p; -a\le B<A\le 1; p\in\mathbb{N})\]
of analytic and $p$-valent functions in the open unit disk $U$. In particular, various growth and distortion theorems, and several coefficient estimates, are obtained for these as well as related classes of analytic and $p$-valent functions in $\mathcal U$.