
CONVOLUTIONS OF UNIVALENT FUNCTIONS WITH POSITIVE COEFFICIENTS
Author(s) -
B. A. Uralegaddi,
A. R. Desai
Publication year - 1998
Publication title -
tamkang journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 18
eISSN - 0049-2930
pISSN - 2073-9826
DOI - 10.5556/j.tkjm.29.1998.4256
Subject(s) - mathematics , combinatorics , regular polygon , geometry
Let $f(z)=z+\sum_{n=2}^\infty a_n z^n$, $a_n\ge 0$ and $g(z)=z+\sum_{n=2}^\infty b_n z^n$, $b_n\ge 0$. We investigate some properties of $h(z) = f(z) *g(z) =z+\sum_{n=2}^\infty a_nb_n z^n$ where $f(z)$ and $g(z)$ belong to certain subclasses of starlike and convex functions.